Digital System Design

Lecture 14

Combinational Logic Design

Multiplexers, Demultiplexers and

Encoders

Objectives:

- **1. Multiplexers:**
 - a. 4-to-1 Multiplexers.
 - **b. Design of 8:1 Multiplexers.**
- 2. Demultiplexers.
- 3. Encoders.
- 4. Examples.

1. Multiplexers

- A Multiplexers (MUX) is a combinational logic component that has several inputs and only one output.
- MUX directs one of the inputs to its output line by using a control bit word (selection line) to its select lines.
- > Multiplexer contains the followings:
 - \circ **2ⁿ** data inputs
 - o *n* selection inputs
 - o a *single* output
 - Selection input determines the input that should be connected to the output.
- > The multiplexer sometime is called data selector.
- > The multiplexer acts like an electronic switch that selects one from different.
- A multiplexer may have an enable input to control the operation of the unit.

a) 4-to-1 Multiplexers

- ✓ 4-data input MUX
- $\checkmark s_1, s_0$ Select lines.
- $\checkmark p_0, p_2, p_3, p_1$ Input lines.
- \checkmark *F*-Single output line.

 $F = \overline{S_1} \overline{S_0} P_0 + \overline{S_1} S_0 P_1 + S_1 \overline{S_0} P_2 + S_1 S_2 P_3$

MUX implementation

b) Design of a 8:1 multiplexer

- How to construct a 8:1 MUX from two 4:1 MUX.
 - \checkmark X₁ and X₂ are the two output lines of two 4:1 MUX
 - $X_1 = \overline{S_1} \overline{S_0} P_0 + \overline{S_1} S_0 P_1 + S_1 \overline{S_0} P_2 + S_1 S_2 P_3$ $X_2 = \overline{S_1} \overline{S_0} P_0 + \overline{S_1} S_0 P_1 + S_1 \overline{S_0} P_2 + S_1 S_2 P_3$

Design for a 8:1 MUX network

2. Demultiplexers

The demultiplexer is a combinational logic circuit that performs the reverse operation of multiplexer (Several output lines, one input line).

Explain:

$\begin{array}{c} X \\ C \end{array} \longrightarrow F = X When C = 1 \end{array}$
Two select lines four outputs
$\overline{S_1} \overline{S_0} = 0 0 \Longrightarrow P_0 = X$
$S_1 \overline{S_0} = 0 \ 1 \implies P_1 = X$
$\overline{S_1} S_0 = 1 0 \implies P_2 = X$
$S_1 S_0 = 11 \Longrightarrow P_3 = X$

inp	Output	
X	С	F
0	0	0
0	1	0
1	0	0
1	1	1

3. Encoders

- An encoder is a digital circuit that performs the inverse operation of a decoder.
- > An encoder has 2^n (or fewer) input lines and n output lines.

The encoder can be implemented with OR gate whose inputs are determined directly from the truth table.

	Inputs							0	output	s
D_0	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	X	Y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

> Output X is equal to 1 when the input digit is 4, 5, 6 or 7.

> Output Y is equal to 1 when the input digit is 2, 3, 6 or 7.

> Output Z is equal to 1 when the input digit is 1, 3, 5 or 7.

$$X = D_4 + D_5 + D_6 + D_7$$
$$Y = D_2 + D_3 + D_6 + D_7$$
$$Z = D_1 + D_2 + D_5 + D_7$$

> We need *three OR gates*.

4. Examples

4.1) Active-low decoder:

- So we can use active-low decoders to implement arbitrary functions too, but as a product of maxterms.
- > For example, the implementation of the function

$$f(x,y,z) = \prod M(4,5,7)$$

Using an active-low decoder is:

- The "ground" symbol connected to EN represents logical 0, so this decoder is always enabled.
- > Remember that you need an **AND** gate for a product of sums.
- 4.2) Implement the following combinational functions using activehigh decoder.

$$P_1 = \Sigma_m(1,2,5,6,8,11,12,15)$$

$$P_2 = \Sigma_m(1,3,4,6,8,10,13,15)$$

$$P_4 = \Sigma_m(2,3,4,5,8,9,14,15)$$

Solution:

- 4.3) A certain logic circuit has four inputs A, B, C, and D. The output X of the circuit is logic 1 if two or more inputs are logic 1.
- a) Write the truth table for this circuit. *Solution:*

A	В	С	D	Χ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

b) Implement the function using one decoder with active low output.

A	B	C	D	X	Maxterm
0	0	0	0	0	$M_0 = A + B + C + D$
0	0	0	1	0	$M_1 = A + B + C + \overline{D}$
0	0	1	0	0	$M_2 = A + B + \overline{C} + D$
0	0	1	1	1	
0	1	0	0	0	$M_4 = A + \overline{B} + C + D$
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	0	$M_8 = \overline{A} + B + C + D$
1	0	0	1	1	
1	0	1	0	1	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

 $X(A,B,C,D) = \prod (M_0, M_1, M_2, M_4, M_8)$

4.4) Implement the logic function f using a single multiplexer; assume that the inputs and their complements are available at the input of the multiplexer.

$$f(x, y, z) = \prod (2, 3, 4, 7)$$

Solution:

	f	Z	y	x
TO	1	0	0	0
10	1	1	0	0
71	0	0	1	0
11	0	1	1	0
72	0	0	0	1
14	1	1	0	1
72	1	0	1	1
13	0	1	1	1

4.5) The following figure shows a 4-input multiplexer connected to implement a function **F** of three Boolean variables **A**, **B**, **C**.

Complete the following truth table:

Log Inj	gica puts	Output	
A	B	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0